LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

THIRD SEMESTER - APRIL 2025

UCH 3503 - THERMODYNAMICS

Dept. No.

Date	: 29-04-2025 Dept. No.	Max. : 100 Mar
îme	: 01:00 PM - 04:00 PM	
	SECTION A - K1 (CO1)	
	Answer ALL the Questions -	$(10 \times 1 = 10)$
1.	Fill in the blanks	,
a)	The ideal gas equation is	
b)	According to first law of thermodynamics, energy of the universe is	
c)	Complete the equation, $\Delta H - T\Delta S = $	
d)	T1	
e)	The arrangement of each molecule in a system at a single moment of time is	
2.	True or False	
a)	Gas molecules interacting with one another is called as ideal gas.	
b)	The temperature at which the Joule-Thomson coefficient changes its sign i	s known as inversion
	temperature.	
c)	Efficiency of a heat engine is always 100%.	
d)	The rate of a reaction is proportional to active masses of reactants.	
e)	Thermodynamic probability is always less than 1.	
	SECTION A - K2 (CO1)	
	Answer ALL the Questions	$(10 \times 1 = 10)$
3.	Answer the following	
a)	Define real gas.	
b)	What is enthalpy of formation?	
c)	Define entropy.	
d)	Give an example for an equilibrium reaction.	
e)	Define heat capacity.	
4.	Match the following	
a)	Density - Gibbs free energy	
b)	Isochoric process - Intensive property	
c)	Spontaneity - Volume constant	
d)	Reversible reaction - Perfect crystalline solid	
e)	Absolute zero temperature - Closed system	
	SECTION B - K3 (CO2)	
Ans	wer any TWO of the following	$(2 \times 10 = 20)$
5.	Derive the kinetic gas equation, PV=½mnc².	(10)
6.	(a) Obtain the relationship between C _p and C _v .	(5)
	(b) Illustrate Hess's law of heat of summation.	(5)
7.	(a) Derive any two Maxwell's relation.	(5)
0	(b) Calculate the efficiency of heat engine working between 110 °C and 25 °C	
8.	(a) Derive the relationship between K_p and K_c .	(5)
	(b) Apply Le-Chatelier-Braun principle and explain the conditions to incre ammonia from nitrogen and hydrogen.	ase the production of (5)
		(2)

	SECTION C – K4 (CO3)			
Ans		$2 \times 10 = 20$		
9.	(a) Define bond energy and explain its applications.	(5)		
	(b) Describe the Nernst heat theorem.	(5)		
10.	(a) Write the expression for different types of molecular velocities.	(5)		
	(b) Derive the integrated form of Kirchhoff's equation.	(5)		
11.	(a) Derive Gibbs-Helmholtz equation.	(5)		
	(b) Obtain a relationship between standard change in Gibbs free energy and K _p .	(5)		
12.	(a) Give the difference between classical thermodynamics and statistical thermodynamics	nics. (5)		
	(b) Using Stirling's approximation, find the value of ln 1000!	(5)		
SECTION D – K5 (CO4)				
Ans	wer any ONE of the following ($1 \times 20 = 20$		
13.	(a) Derive the expression for first law of thermodynamics.	(6)		
	(b) Distinguish between state function and path function with examples.	(4)		
	(c) Explain Joule-Thomson effect and derive an expression for Joule-Thomson coeffice	eient. (10)		
14.	(a) Construct Carnot cycle and obtain an expression for efficiency of heat engine.	(10)		
	(b) Give the relationship between K_p and K_c for the following equilibrium:	(5)		
	$N_2O_4 \rightleftharpoons 2 NO_2$			
	(c) Derive the relationship between partition function and energy.	(5)		
	SECTION E – K6 (CO5)			
Ans	wer any ONE of the following	$1 \times 20 = 20$		
15.	(a) Derive van der Waals equation of state and obtain the expression for critical temper	erature. (10)		
	(b) Apply Le-Chatlier-Braun principle for the dissociation of PCl ₅ .	(5)		
	(c) Obtain the expression for entropy of mixing of an ideal gas.	(5)		
16.	(a) Formulate the expression for most probable distribution for a macrostate	using major		
	assumptions of Maxwell-Boltzmann statistics.	(10)		
	(b) Derive expressions for ΔU , ΔH , and W in reversible isothermal expansion of an id	eal gas. (10)		
